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Abstract

We present Cerberus, a sharded Byzantine fault-tolerant (BFT) solution to the state machine replication 
(SMR) problem. While classical SMR protocols ensure global ordering of commands, Cerberus introduces 
a partial ordering regime that enables a novel state sharding approach. With this approach, the consensus 
process for commands may be massively and safely parallelized across many nodes while retaining 
optimistic responsiveness and linear message complexity. Cerberus is designed as a suitable core for 
Radix, a distributed ledger technology (DLT) platform intended for a variety of deployments including 
global-scale decentralized public networks.
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1 Introduction
Consensus protocols are necessary to conduct state machine replication (SMR) across a network of unreliable 
machines. While broadly applicable and with a long history, consensus protocols designed for SMR within 
distributed ledger technology (DLT) networks are of intense interest. These networks range from global-scale 
public decentralized platforms to critical private business back-ends and often have very high transactional 
throughput demands. Extending and adapting existing consensus protocols to meet this demand for scalability 
has proved challenging.

We present Cerberus as a new scalable consensus protocol of particular utility in these high-demand DLT 
networks – including the Radix DLT network.

Scale Through Parallelism
Most consensus protocols today come to an agreement about the ordering of all commands (e.g. transactions 
or events) along a single timeline, stored in agreed chronological order in a blockchain or similar. This is also 
known as “global ordering”. Global ordering is generally required for any DLT offering traditional, imperative, 
“Turing complete” smart contract virtual machines where correct smart contract execution state may depend 
unpredictably on any other state within the system. Coordinating the consensus process for large numbers of 
commands generally incurs high communication overhead and consequently limits achievable throughput.

State sharding is a technique that can be used to parallelize consensus agreement to increase throughput. 
However, this parallelization is only possible if the method of sharding used enables separation of commands 
that are unrelated and thus may be safely processed in parallel. Sharding in this way is in direct opposition to 
the single timeline implied by a global ordering requirement.

Cerberus addresses this shortcoming by using multiple concurrent timelines that only enforce ordering of 
related events. To achieve this, Cerberus takes a combined approach to the consensus and application layers 
that does not require global ordering even for smart contract-like functionality. This opens up the possibility 
of safe parallelism of consensus through state sharding that substantially reduces throughput limitations. 
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Application Layer Interaction
Eliminating the need for global ordering in the application layer requires an alternative to the typical “smart 
contract” development method. We believe that a different approach is not only possible, but that it also has 
benefits (covered outside this paper) that go beyond removing the global ordering burden from consensus. 
This alternative approach breaks useful DLT application functionality into components that are functionally 
independent.

An exemplar of an application layer that works in this way is the Radix Engine, the application layer for Radix. 
The Radix Engine allows a developer to specify transactional functionality in an “asset-oriented” fashion. Useful 
elements of everyday transactions such as identities, money, products, or property are modeled not within 
“unbounded” smart contract code, but as functional, separate components that may be updated independently. 
The Radix Engine is able to translate these components into discrete finite state machines, which then easily 
translate to a shardable language Cerberus understands. The Radix Engine is, therefore, able to express a 
transaction as a command to Cerberus consisting of a collected set of state machine updates with explicit 
dependencies.

Cerberus is designed to take advantage of the highly granular partial ordering made possible by this type of 
application layer, enabling massive parallelism of consensus.

Related Work
The emergence of Bitcoin, distributed ledger technologies (DLT), and smart contract platforms have fueled a 
new era of lively research in consensus protocols. Recent developments in Bitcoin-style “Nakamoto” consensus 
[1][2], PBFT-like consensus [3][4], randomized consensus [5][6], and others represent advancements in 
fundamental consensus approaches that have diverse tradeoffs in the guarantees they can provide to users.

Cerberus’ advancement in parallelization of consensus is based on a leader-based Byzantine fault-tolerant 
(BFT) consensus approach. BFT protocols for state machine replication (SMR) have the advantage of strong 
consistency (as opposed to availability), with a long history reaching back to the work of Lamport, Shostak, et 
al [7]. A definitive milestone in practical BFT protocols was reached with PBFT [8].

PBFT uses a two-phase consensus process of prepare and commit. Nodes (or participants in consensus, e.g., 
computers in a decentralized network) select from their ranks a “leader”. A leader proposes a command by 
broadcasting it to the other nodes. When 2f+1 nodes (where f is the maximum tolerated number of Byzantine 
faulty nodes) acknowledge the command’s validity by responding with their signature, the signatures are 
aggregated into a “quorum certificate” (QC) and broadcasted to the nodes as proof. The 2f+1 requirement ensures 
that even double-voting faulty nodes cannot win a majority. Once 2f+1 nodes acknowledge and sign the proof, 
the command is considered “committed” and final.

PBFT provided the first practical implementation of a partially synchronous BFT protocol, but it did not grapple 
with today’s demand for scalability in open public networks or global cloud deployments. Of particular concern 
for these large network deployments is the high message complexity required for each “view change”, or leader 
replacement, due to PBFT’s requirement for 2f+1 QCs as a proof of safety before making progress. 

More recent BFT work such as Tendermint [3] extended the state of the art in the context of large blockchain 
networks by reducing the messaging overhead required for view changes. Rather than requiring 2f+1 QCs, a new 
leader simply “extends” its highest QC (using it as the basis for a new proposal). While eliminating substantial 
messaging overhead, this opens the possibility that there is another node with a higher QC. Therefore a leader 
must wait a defined maximum network delay time before it can be sure that it has the highest QC, preventing 
deadlocks. This reduces responsiveness of the network by introducing a fixed latency and therefore limits 
throughput by the fixed time window rather than the actual speed of the network.

More recently, the HotStuff protocol [4] presented an important extension to previous BFT approaches. 
HotStuff maintains optimistic responsiveness while keeping low messaging complexity by adding a third phase 
between prepare and commit: pre-commit. The pre-commit phase allows leaders to “‘change their mind’ after 
voting “in the phase”,  meaning that consensus can safely proceed on new proposals and the network no 
longer has to wait a defined network delay time. A commit occurs as soon as QCs for pre-commits have been 
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collected successfully. Combined with threshold signatures, this provides “optimistic responsiveness” and linear 
messaging complexity even for view changes. We leverage many of HotStuff’s extensions, and corresponding 
advantages, as we construct the sharded Cerberus BFT protocol.

Scope of this Paper
We begin by describing the Cerberus model as a 3-phase BFT consensus protocol with a sharding technique 
for partially-ordered commands. We then briefly analyze the model to show that it achieves linear messaging 
complexity while balancing the requirements for node capabilities, parallelization and security. A detailed 
specification of the Cerberus protocol, as well as formal proofs of safety and liveness, will follow in a later 
revision of this paper.

We follow the Cerberus model with topics relating to the implementation of Cerberus in practical DLT networks, 
focusing on the Radix public network. We describe methods to provide protocol functions outside of Cerberus 
consensus that are required in order to create and deploy a useful Cerberus-based network.

This paper is a working document for the Radix team and still under active research; as a result some areas 
will require further explanation or revision. As always, we welcome comments, collaboration and feedback.

2 Model
Overview
Cerberus solves the state machine replication (SMR) problem [15]: the fault-tolerant distribution of state across 
many nodes. Cerberus builds on top of BFT-style consensus, retaining two main properties of BFTs:

1.	 Safety under asynchrony, liveness under synchrony
2.	 Favoring consistency over availability (i.e. safety over liveness in periods of asynchrony)

We also make the following common BFT assumptions in our basic model. While we make these 
assumptions for the purposes of describing a simple form of the Cerberus model, some of these 
restrictions may be lifted in practical implementation (notably a static node set). We discuss some of 
these in the Implementation section of this paper.

•	 A static, globally-known set of nodes
•	 Partial synchrony (i.e. after some global stabilization time there is an unknown bound 

within which all messages arrive)
•	 2f+1 nodes follow protocol, where f is the number of Byzantine nodes (per shard in the 

case of Cerberus)
•	 Adversaries that are computationally incapable of breaking standard cryptographic 

primitives
•	 The availability of a practical threshold signature method to aggregate votes from nodes
•	 Communication between correct nodes is peer-to-peer, authenticated, and reliable

In classical BFT, a log of client commands is globally ordered so that correct nodes can agree on the final state. 
Performance improvements have traditionally relied on “vertical” scaling or “pushing more commands down 
a single pipe”. In practice, applications generally do not require global ordering of all commands; they only 
require ordering of commands that are interdependent.

Cerberus requires an application layer that specifies dependencies so that it may implement partial ordering, 
only ordering commands which are related. Cerberus’s “shards” represent these dependency relationships 
between commands. Commands that do not share a partial ordering relationship also do not share shards and 
can be safely executed in parallel.
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With commands sharded in this way, Cerberus conducts consensus by treating each shard as a separate “local 
Cerberus” BFT instance, with atomic commits of commands across arbitrary sets of shards provided by an 
“emergent Cerberus” BFT. We construct our description of the Cerberus protocol in three major steps:

A) Partition the application layer by formalising the 
partial ordering requirements of each command in 
the application layer.

B) Combine multiple “local Cerberus” BFT instances 
to form an “emergent Cerberus” instance across 
shards with analogous properties to a simple 
traditional BFT.

C) Parallelize Emergent Cerberus instances across 
shards, enabling massive and safe parallelization of 
the consensus process across the network. 

atomic commands
state changes

S0

S1

S2

S3

S4

S5

Sh
ar

ds

S0

S1

S2

Sh
ar

ds

cmd

emergent Cerberus BFT

emergent instance

S0

S1

S2

3-chain

3-chain

3-chain

E0
3-braid

local instance

S0

S1

S2

S3

S4

S5

E0

E1

E2
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changes (thin edged circles) across shards s0-s5 
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For example, consider a simple application layer consuming a command saying “Alice wants to buy 3 bananas for 
$3”. This command could map to shards representing the available banana supply, current banana price as well 
as Alice’s current account balance1. Upon receiving the command, the shards will map the command of it to get 
their individual intermediate result. Cerberus then distributes these local results to all shards and applies them 
in the reduction step to yield the next shard states.

B) Local Cerberus Instances into Emergent Cerberus
We now describe how Cerberus can execute a command atomically across all shards it is partitioned to, starting 
with the operation of consensus within a single shard and moving on to operation of consensus across multiple 
shards. 

Local Cerberus
We start with a single BFT instance patterned after the BFT design of HotStuff [4]. We call this a local Cerberus 
instance on a single shard that, operated in isolation, provides the same optimistic responsiveness and linear 
messaging complexity of HotStuff (as applied to a single blockchain). These advantages will serve as a useful 
foundation as we construct Cerberus as a multi-shard consensus protocol.

1 Note that Radix’s mapping and usage of shards are different than the example shown in figure 2. See “Radix Engine” in the 

Implementation section of this paper for more information. 

Figure 2: Example of using the application layer to partition consensus

A) Partition the Application Layer
Cerberus requires that its application layer specify the partial ordering requirements of its commands so that 
consensus may be effectively parallelized. Specifically, the implementer must define the following pure functions 
for the application layer:

1. Specify the initial state of each shard

  INIT() -> map of shard -> initialShardState

2. Partition the command into its set of shards

  PARTITION(command) -> shards

3. Map a command to its per-shard intermediate results

  MAP(command, shard, shardState) -> localResult

4. Reduce the local intermediate per-shard results across all shards

  REDUCE(command, shard, shardState, localResults) -> nextShardState

INIT defines the initial state of the application. PARTITION yields the shards a command must be synchronized 
with to maintain correct partial ordering. When a command is to be executed, it is first mapped to per-shard 
intermediate results via MAP. The intermediate results are then reduced to a global result and applied across all 
shards of the command via REDUCE. This approach is similar to that of contemporary large-scale distributed 
computing models [9]
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Figure 3: A local Cerberus 3-chain

Progression through each phase of consensus is marked by the creation of a “vertex” (shown as the enclosing 
rounded squares in figure 3) composed of that phase’s QC and a reference to the Vertex’s parent, similar to 
blocks in a blockchain. In a local Cerberus instance, the vertex representing a new proposal (the beginning of a 
new 3-chain) includes the command.

Multiple Local Cerberus Instances
We now introduce multiple instances to the model with n independent local Cerberus instances operating in 
parallel. For simplicity, we assume that each of these instances are served by a distinct set of nodes (i.e. each 
node is assigned to exactly one instance). This bi-map between nodes and instances are assumed to be static and 
well known to every node 2.

Figure 4: Nodes distributed over n parallel instances of local Cerberus (denoted S)

These parallel instances are not very useful yet however as there is no way to synchronize them.

Emergent Cerberus Instance
We now synchronize multiple local Cerberus instances. To do this, we add synchronization primitives between 
multiple local Cerberus instances and model the synchronized combination as a single emergent Cerberus 
instance which behaves like a single cross-shard BFT instance.

Specifically, we start with a “3-chain” BFT composed of prepare, pre-commit, and commit phases. A quorum 
certificate (QC) – an aggregation of signatures from validating nodes – is required for each phase.

2 We discuss practical mapping of nodes to shards and management of dynamic node sets in the Implementation section of this paper.

QC cmd

proposal
vertex

prepare QC
vertex

pre-commit QC
vertex

commit QC
vertex

QC QC QC

QC0

QC1

QCn QCn QCn QCn QCn

QC1 QC1 QC1 QC1

QC0 QC0 QC0 QC0cmd cmd

cmd

cmd

S0
chains

S1
chains

Sn
chains

n0

n1

n2

n3

S 0 
no

de
s

S 1 
no

de
s

S n 
no

de
s

n4

n5

n6

nm

nm+1



7

Traditional BFT (Local Cerberus) Emergent Cerberus

Leader Leader Set

Proposal Merged Proposal

QC QC Set

3-chain 3-braid

Emergent Leader:  Leader Set

A local Cerberus instance designates a leader to drive progress in each new view via new-view messages from 
that shard’s nodes. At the emergent instance level, the set of leaders elected by a set of shards is considered, in 
aggregate, to be the emergent leader called a “leader set”.

Figure 5: Leader set implicitly formed as a set of local leaders

In the example shown in Figure 5, two Cerberus shards independently elect local leaders (n0 and n5, respectively) 
via new-view messages. The set {n0, n5} is then considered the leader set across the two instances. Note that at 
this stage no node is aware of the leader set, it is only a theoretical construct for the purposes of describing and 
analysing the protocol.

Emergent Proposal: Merged Proposal

We now add the mechanism by which a leader set can propose a new command, or a “merged proposal”.

To explain by example, each local leader in a leader set, {n0, n5} in our example, broadcasts a local proposal 
to all nodes in the emergent Cerberus instance (the shards of which are specified by the application layer’s  
PARTITION function). Each node then takes each proposal from each local leader in the leader set and merges 
them to form a merged proposal.

As commands are sharded, each local proposal also includes the local intermediate result provided by the 
application layer’s MAP function.

We implement this emergent level by mapping analogous concepts from Traditional BFT (i.e. local Cerberus 
instances) to multi-shard concepts in emergent Cerberus:
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Figure 7: The merged proposal is added to the end of both chains

Emergent QC: QC Set

We now add a mechanism for the leader set to collect votes for the vertex. When a node receives an merged 
proposal, it sends its vote to its local leader. When the local leader has 2f+1 votes, it creates a QC. From the 
emergent view, the leader set creates an emergent QC, or “QC set”, made of one QC from each shard, when each 
of its local leaders creates its local QC.

Figure 8: Emergent QC set for cmdA collected from QCs from each shard, for a single phase

Figure 6: An emergent merged proposal is formed from a set of local proposals with equivalent commands

This merged proposal then acts as a vertex at the emergent level which begins the 3-braid between shards S0 
and S1. 
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Figure 9: 3-braid in an emergent instance across two local instances

Once a 3-braid is created for a command, the command is considered “committed”. 

Emergent Failure Mitigation
We now consider how the emergent Cerberus instance handles leader failures, forks, and merges.

Emergent Leader Failures

In a local Cerberus instance if a vertex fails to get created at some view, a blank vertex is added in its place so 
that the parent/justification equivalence check is false. In an emergent Cerberus instance, every parent of each 
shard must be checked.

Figure 11: Cerberus failure, parent0 is not equivalent to the rest of the parents or justifications.

Emergent 3-chain: 3-braid

The QC set is then passed on to the leader set in the next view where the process starts again repeating the 
process until a 3-braid  is formed for cmdA.
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Figure 12: Local Cerberus instance fork which requires an “unlock” of the vertex with cmd at view v+1

Figure 13: Emergent Cerberus fork which requires shard S1 to “unlock” shard S0 from the vertex with cmdA at view v0+1 

We extend HotStuff’s check in the emergent instance by including the forked instance’s higher QC in the 
emergent QC. This is detected when a forked instance receives a proposal that has an older, conflicting QC. The 
forked instance then sends the forked QC as a message to the other shards.

Figure 14: Recovery of a cross-instance fork in an emergent instance through forked QC

Emergent Forks

In a single local Cerberus instance, safety and liveness are preserved in the face of forks with checks on locked 
vertices and/or QC view numbers. With an emergent Cerberus instance, there is additional complication since 
a fork may occur outside of a local instance’s view.
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This forked local QC is then included in the emergent QC and is proof of a fork. A “virtual QC” is then created 
from this proof which “virtually” has a higher viewNumber than the current QC and extends back to the point 
where the forked QC is no longer forked.

Figure 15: A Virtual QC with a virtual higher viewNumber is used to “unlock” a forked Emergent Cerberus instance

Virtual QCs thus act as a level of indirection. We now refer to QCs which actually contain signatures as physical 
QCs. A virtual QC is composed of a primary physical QC and an optional forked physical QC. A virtual QC 
composed of just the primary QC without the forked QC acts like the primary. For the purposes of simplicity, 
for virtual QCs with no fork, we will represent this as a single blue box. And for virtual QCs with a fork, we 
will represent this as a blue box with a justify arrow pointing to a virtual node. For example, Figure 15 can be 
reduced to the following diagram:

Figure 16: Virtual QCs operate as a layer on top of physical QCs and substantially reduce the 
complexity of fork management

Emergent Merges

As long as the leader set is correct and proposes a command, progress should always be made in order to ensure 
liveness. A complication arises in the case of forked local proposals, which are possible when dealing with 
separate independent Cerberus local instances.
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Figure 17: Local Proposals may be forked - in this example there are two vertices connected at view 
v1+1 on S1 and thus is forked

To resolve forked proposals, we modify the merging of  local proposals so that if there exists a fork amongst the 
local proposals, we reuse the Virtual QC method to effectively unlock the locked shard.

As an example, in Figure 17 VQC0 and VQC1 in views v0+3 and v1+6 respectively fork. To resolve this, the 
physicalQC of VQC1 is added as a forkedQC to VQC0. This effectively removes the fork.

The modified local proposals are then able to merge as normal without forks. The result can be seen in Figure 19.
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Figure 18: As the original local proposed virtual QCs forked, we modify the proposals by including 
forked QCs until the fork disappears. Normal merging of proposals can now continue.
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Figure 19: The merged proposal post-modification cleanly attaches to both chains

C) Parallelize Emergent Instances
Now that we have described a mechanism that combines multiple local Cerberus instances into an emergent 
Cerberus instance, we can now parallelize emergent instances across a fixed set of shards. 

Given a set of shards S={S0, S1, ...,Sn} we can create an emergent instance across any subset from S. Furthermore, 
we can create a set of emergent instances in parallel (a set of subsets of shards from S) as long as each instance 
is disjoint (no element in common) from others. For example, {{S0, S1}, {S2}, {S3, S4, S5}}.

The creation of emergent instances is dictated by the set of commands to be processed and the result given by 
the application layer’s PARTITION function across these commands.

In the example below, cmd0-4 defines a set of emergent instances. The partitions of cmd0 and cmd1 are disjoint 
shard sets thus they are able to create two separate emergent instances in parallel. On the other hand, cmd1 and 
cmd2 intersect at shard S3 thus one command must be executed before the other (cmd1 in this case).

PARTITION(cmd0) -> {S0, S1, S2}
PARTITION(cmd1) -> {S3, S6}
PARTITION(cmd2) -> {S2, S3, S5}
PARTITION(cmd3) -> {S4, S5}
PARTITION(cmd4) -> {S6, S7}

Figure 20: Example parallelization of Cerberus for commands cmd0-4 across shards S0-S7

The set of shards can be arbitrarily sized, enabling massive parallelization of the consensus process. Notably, 
this form of parallelization introduces a tunable tradeoff between security and scalability: reducing the number 
of shards each node covers increases parallelism and scale, but decreases the validator set size of a given 
shard. This capability allows the system designer to select a minimum threshold of per-shard node coverage 
that achieves high practical security, while maximizing parallelism and scale by allowing a large number of 
independent nodes. This is unique to Cerberus and discussed further in the analysis section.
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Analysis
As with HotStuff, the messaging complexity of Cerberus is measured in authenticator complexity, the number 
of authenticators received by any given node in order to reach a consensus decision. In the nominal case using 
threshold signatures, HotStuff achieves authenticator complexity of O(n) – linear complexity with the number 
of nodes n3.

In Cerberus, we must consider sharding. Given an evenly distributed node-to-shard mapping and single-shard 
commands, Cerberus behaves like HotStuff and the authenticator complexity given a correct leader is O(n / 
T) where T is the number of shards. As T approaches 1, or a single shard consensus instance, authenticator 
complexity approaches O(n), the same as HotStuff.

With emergent Cerberus instances, cross-shard consensus requires a separate QC per shard. Thus the 
authenticator complexity with correct leaders is O(s * n / T) where s is the number of shards in a given command 
(and s must be 1 <= s <= T).

This definition lets us consider the tradeoffs of deploying and using a Cerberus-based network. In effect, s / T is 
the burden placed on the network by the application layer, while n / T defines a tradeoff between security (more 
nodes per shard) and parallelism (fewer nodes per shard). For example:

•	 In a practical HotStuff network, a certain set number of nodes might be selected to provide the 
amount of per-shard node overlap needed to provide high practical security, without creating too 
much messaging overhead. If we apply that same set number to the number of nodes per shard in a 
Cerberus network, the throughput of the Cerberus network can be scaled linearly with the number 
of nodes, without compromising per-shard security.

•	 If we assume an application layer creating commands with an average low number of dependencies 
(relatively simple transactions), s burdens messaging very little. One can imagine implementing a 
public network in which greater fees are paid only for unusually complex transactions.

3 Radix DLT Network Implementation
While Cerberus is a consensus protocol that may be applied to a variety of applications, an application area of 
particular interest is that of scalable DLT networks such as Radix. This section describes a set of conservative 
and reasonably extensible potential solutions to implementation issues in deploying Cerberus in Radix, and 
potentially other DLT networks. While we attempt to cover some of the most important aspects of implementation, 
the solutions provided are not intended to be fully formed, nor is the listing of issues exhaustive.

Radix is intended for a range of network deployment types, the most challenging of which is a public 
permissionless network. The solutions proposed in this section are generally intended to be applicable across 
Radix network deployment types, but with a particular focus on a very large network with open participation.

Radix Engine Application Layer
To provide its parallelization benefits, Cerberus requires an application layer that specifies the dependencies 
between commands. Here we present the key interactions between one such application layer, the Radix Engine, 
with Cerberus consensus.

A Radix node combines a Cerberus-based Radix Ledger with an application layer called the Radix Engine. A 
collection of Radix nodes make up a Radix network called a “universe”, and transactions created by the Radix 
Engine are called “atoms”. Atoms contain a set of discrete updates to finite input/output state machines called 
“particles”. This is similar to the common blockchain UTXO model but extended for greater flexibility. As might 
be expected, atoms must be committed or rejected by Cerberus consensus atomically; either all particles within 
the atom are valid and the atom is committed, or one or more particles are invalid and the atom is rejected.

Radix Engine atoms and their particles map neatly to Cerberus commands that specify related state changes. 
The particles themselves define the mapping of the atom to shards, with each particle mapping directly to a 
shard (the particle/shard addressing scheme is described below in Particle Identifiers).

3 Similar to other leader-based BFT protocols, the linear message complexity of Cerberus relies on the use of a signature aggregation 

scheme (e.g., using BLS signatures). 
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Each particle/shard is, therefore, a simple state machine that looks like figure 21.

Figure 21: The defined sequential states of “particles”: neutral (default), up (active), and down (consumed)

Given the UTXO-based logic provided by the Radix engine, which dictates which input/output pairs are valid, 
we use Cerberus to enforce the atomic commit of updating the state of multiple particles (either up or down). 
An example ledger is shown in figure 22.

.

Particle Identifiers
Particles, being the fundamental unit of the Radix Engine, must be uniquely addressable by an identifier. Inspired 
by Chainspace’s “Hash-DAG structure” [11], we identify a particle by the atom in which it was created to create 
a high-integrity data structure of transactions in which it is both hard to forge a transactions history but easy 
to verify it. 

A particle’s identifier uses a combined hash of a containing atom’s identifier and the particle’s (deterministic) 
index within that atom to identify particles. A particle’s identifier is “created” when it first appears in an atom, 
and any subsequent changes to that particle use this same identifier. 

Figure 23: Using a particle’s identifier (right) as defined at the particle’s creation (left)
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Figure 22: Thick edged pills represent commands that group related particle state changes (thin edged 
circles) in their respective shards.
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This particle identification scheme produces immutable, auditable chains of hashes that may be traced back to 
the creation of each particle. Further, since the particle identifier is based on the atom it was created in, rather 
than its content, there is no need for nonces to ensure uniqueness amongst particles in different atoms with 
identical content.

Shard Mapping
We use a one-to-one mapping of particles to shards based on particle identifiers. Distributing particles across 
the shard space in this manner has advantageous properties:

1.	 The shard space can be fixed-width, static and well-known ahead of time, removing the need for 
complex dynamic sharding procedures.

2.	 The consensus process is naturally “load-balanced” across all shards, as particle identifiers are 
hashes that can be expected to be nearly uniformly distributed.

3.	 The potential for attack or disruption for an adversary of taking over any single shard are low, as a 
single shard contains the state of only a single particle.

This mapping provides good consensus performance and security on transaction writes. Transaction read 
queries, however, such as requesting a complete transaction history for a given account, are more difficult since 
every transaction is addressed by content rather than by a single identifier.

A comprehensive solution to the contradictory requirements of consensus (e.g., shard safety, load balancing) 
and applications (e.g., easy account querying) requires two separate solutions, each tuned to the needs of its 
domain and freed from the constraints of the other. We decouple the shard mapping used by consensus from 
that used by applications with a proposed query layer which operates independently on top of Cerberus. The 
architecture is similar to other distributed, scalable systems such as search engines on top of the web, domains 
on top of the internet, or queries on top of IPFS [12] or BitTorrent [13].

Figure 24: A query layer utilizing a secondary index on accounts

A simple query layer could be one based on a secondary index on accounts as shown in figure 24. This can be 
supported as long as the query layer can retrieve up-to-date particles.

Some practical solutions to retrieving the latest state are:

1.	 Let the query layer eavesdrop on every message in the consensus layer. The query layer can then tell 
which transactions have been committed to.

2.	 Have the query layer “crawl” through transactions. Since practically every transaction is linked to 
another, a crawler can easily walk the chain of transactions.

Once the latest state has been received it can be submitted to any of the many available distributed key/value 
databases or a decentralized DHT such as Kademlia [14].

Particles
(consensus layer)

Accounts
(query layer)

Alice Bob Carol
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A more specific description of the precise query layer mechanism to be used in Radix is left for future work.

Virtual Single-shard Nodes
As a theoretical model, Cerberus assigns one shard to every node. In practice, mapping nodes to machines, 
with only one shard per machine, would be an inefficient use of resources since shards represent particles that 
are both ephemeral and typically inactive. Most machines will have hardware capable of serving a very large 
number of shards simultaneously.

To retain the simplicity and correctness of Cerberus, 
we virtualize an arbitrary set of single-shard nodes in 
every physical node (i.e. machine). The virtual nodes 
behave exactly as their physical counterparts would, 
with the only difference being that multiple virtual 
nodes map to the same physical machine (with the 
same address and public key).

Global Shard
In Cerberus, shards allow different nodes to participate in only a subset of the network’s total consensus activity 
in processing general client request commands (i.e. processing transactions). However in a practical DLT 
network, certain functions outside of general client requests require consensus and visibility of all nodes (e.g. 
churn management). We therefore introduce the concept of a “global shard” that can support these functions. 
As opposed to regular shards that are mapped to subsets of nodes (and machines) as described above, the global 
shard is mapped to all nodes. All nodes participate in consensus on special-purpose commands there, and store 
the global shard’s state. 

Consensus in the global shard operates identically to other shards, using the same decentralized consensus 
process in the form of a single local Cerberus instance. Rather than conducting consensus on general client 
commands, the global shard conducts consensus on the state of a set of global parameters that are required for 
network operation, such as the current node set and state of staking as described below. It may also be used for 
useful cross-network functions such as network time.

While regular shards in Radix may be considered ephemeral (i.e. related only to short sequence of up/down 
particle updates), the global shard can be thought of as a sort of narrow-purpose blockchain that is operated 
continuously. Compared to command throughput of the general network, the required rate of consensus state 
changes in the global shard is low and is therefore safe to be conducted globally without significant impact to 
performance.

Node Sets and Churn
Cerberus requires that all nodes must know the set of all nodes. However a practical DLT network requires 
tolerance of churn as nodes choose to enter and leave the network. To maintain this dynamic node set, we use 
an identity register that is updated in the global shard.

The identity register uses the notion of an epoch that captures the node set and shard mapping at a certain point 
in time. Epochs are globally known time periods (e.g., 1 hour or 1 day)  during which the node set is fixed. Each 
node keeps track of the current highest epoch and includes it in all messages and client commands. At the end 
of an epoch, all nodes must reach consensus on the next node set by aggregating leave and join requests into a 
special command on the global shard.

Sybil Resistance
As a public network, we must protect against the possibility of an attacker gaining undue control of the node 
set and gaining the ability to break safety/liveness at will (the equivalent to the 51% bitcoin attack). We plan on 
employing  Proof of Stake (PoS) in the BFT setting similar to Casper, Tendermint, and others to protect against 
Sybil attacks.
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Rather than having equal voting power across all nodes, each node will have voting power relative to the amount 
of stake they have registered in order to compete for selection as a validator. This state will be maintained by 
the global shard using special stake and unstake commands. As all nodes must be a part of the global shard, each 
node will have complete information on the mapping between nodes, their shards, and their stakes. This allows 
every node to correctly execute consensus in Cerberus using validator sets selected using stake.

An in-depth description of the application of PoS to Cerberus within the Radix public network is left for future 
work.

Leader DOS Resistance
With our proposed leader election mechanism, future leaders are known well in advance and thus particularly 
vulnerable to denial-of-service (DOS) attacks. There are several possible mitigation strategies:

•	 Use sentry nodes as full proxies between validators (as in Tendermint [10])
•	 Use a leaderless model at the cost of quadratic rather than linear message complexity
•	 Use randomness to make the next leader less predictable (and thus give adversaries less time). This 

strategy would require the use of a verifiable random function, an area of ongoing research.

A deeper analysis of possible applications of these strategies within Cerberus for Radix public or private network 
deployments is left for future work.

Client Command Requests
Cerberus assumes that client command requests are known by leaders for them to select for proposal. A 
mechanism is required to reliably convey requests to leaders. A few possibilities exist, depending on the specifics 
of anticipated network usage.

The most common choice is an approach wherein client requests are broadly shared and a pool of pending 
requests is loosely synchronized (commonly referred to as a “mempool”). 

Command Proposal Selection
Cerberus, being a leader-based consensus, requires a mechanism for reliable selection of client requests for 
proposal. We propose a random selection biased towards the oldest unapproved client requests that will 
eventually select all client commands. For liveness, we rely on the majority of nodes following this protocol to 
prevent attackers from taking advantage of predictable selection. However, it should be noted that the choice of 
proposal selection mechanism has no impact on safety, only liveness.
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